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We study dynamical tunneling in a near-integrable Hamiltonian with three degrees of freedom. Despite the
absence of discrete symmetry we show that the mixing of near-degenerate quantum states is due to dynamical
tunneling mediated by the nonlinear resonances in the classical phase space. Identifying the key resonances
allows us to selectively suppress the dynamical tunneling by adding weak counter-resonant terms.
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Tunneling is a phenomenon that is forbidden by classical
mechanics but allowed by quantum mechanics. In general,
any flow of quantum probability between �approximately�
equivalent yet classically disconnected regions constitutes
tunneling. The classical regions could be disconnected due to
barriers in coordinate space, momentum space, or, more gen-
erally, in the classical phase space. In the cases where tun-
neling occurs despite the absence of obvious energetic barri-
ers it is called dynamical tunneling �1�; the barriers now arise
due to certain exact or approximate constants of the motion
and hence are naturally identified in the underlying classical
phase space. Considerable theoretical �1–8� and experimen-
tal �9� works have established that tunneling between quan-
tum states localized on two symmetry-related regions in the
phase space can be strongly influenced by the classical sto-
chasticity �chaos-assisted tunneling �2�� and/or by the inter-
vening nonlinear resonances �resonance-assisted tunneling
�5��. In the former case, phase space is mixed regular-chaotic
and the splittings show a marked dependence on the nature
of the chaotic states that couple to the tunneling
doublets �2,3�. In the latter case with near-integrable phase
space, the splittings depend delicately on the various reso-
nance islands bridging the degenerate states �4–8�. Clearly, a
quantitative semiclassical theory, still elusive, requires one to
identify key structures in the phase space on which the
theory is to be based. In this regard there is increasing evi-
dence �7,8� that the classical nonlinear resonances might play
a central role in near-integrable as well as mixed phase space
situations.

However, most of the studies thus far have been on two
degrees of freedom �DOF� systems with discrete symmetries
�10�. Does the resonance-assisted tunneling viewpoint hold
in systems with three or more DOF which lack discrete sym-
metries? The main motivation for our study comes from sug-
gestions �6� put forward in the molecular context—can dy-
namical tunneling provide a route for mixing between near-
degenerate states and hence energy flow between regions
supporting qualitatively different types of motion? In addi-
tion, notwithstanding the difficulties associated with visual-
izing the multidimensional phase space, dynamics in three or
more DOF has features that cannot manifest in the systems

studied up until now �11�. In this Rapid we attempt to under-
stand dynamical tunneling in a model nonsymmetric, near-
integrable three DOF system. We show that the mixing of
near-degenerate states occurs via dynamical tunneling medi-
ated by nonlinear resonances and the mixing can be sup-
pressed by adding weak counter-resonant terms.

We study the Hamiltonian

H = H0 + �
r

Kmr
��a1

†��r�a2��r�a3��r�a4��r + H.c.� , �1�

describing four coupled modes j=1,2 ,3 ,4 with

H0 = �
j

�� jnj + xjjnj
2� + �

j�k

xjknjnk, �2�

H0�n�=En
0�n� and H���=E����. Although Eq. �1� has been

inspired in the molecular context �12�, similar multiresonant
Hamiltonians arise in a variety of systems �13�. The occupa-
tion number nj =aj

†aj is expressed in terms of the harmonic
creation �aj

†� and destruction �aj� operators. The perturba-
tions are characterized by mr= ��r ,−�r ,−�r ,−�r� with
strengths Kmr

. The classical Hamiltonian, generated via the
correspondence aj↔�Ijexp�i� j�, is given by

H�I,�� = H0�I� + 2	�
r

Kmr
�I1

�rI2
�rI3

�rI4
�r cos�mr · �� . �3�

�I ,�� are the classical action-angle variables of H0 and
hence the perturbations correspond to classical non-
linear resonances. The parameter 	 is convenient for a per-
turbative analysis �see below�. We restrict ourselves to
three perturbations m1= �1,−2,0 ,0�, m2= �1,−1,−1,0�, and
m3= �1,−1,0 ,−1�. This allows for a clear study of the role of
the specific resonances in dynamical tunneling. The exis-
tence of a conserved quantity P=n1+ �n2+n3+n4� /2, with
the classical analog Pc= I1+ �I2+ I3+ I4� /2, implies that the
four-mode system has effectively three DOF. In the units
appropriate for the model Hamiltonian �12� the Heisenberg
time is given by 
H= �2�c�E�−1 with mean level spacing �E
and c being the speed of light.

We are interested in the fate of a set of near-degenerate
zeroth-order states in the presence of weak perturbations,
Kmr

/�E	kmr
�1. Thus �n�, �n�� , . . ., are such that En

0 
En�
0


 , . . ., with average energy Ē and En
0 � �Ē−�E /2 , Ē

+�E /2�. Certain states, among the set of near-degenerate
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states, mix since they are directly connected to each other via
one of the perturbations. The nonlinear resonances in Eq. �3�
do mediate the mixing via dynamical tunneling. However, in
this work we will focus on states that are not directly coupled
by the resonances in Eq. �3� in order to show that even very
weak induced resonances can lead to substantial mixing that
can be associated with dynamical tunneling. The extent of
mixing of a zeroth-order state �n� can be gauged by comput-
ing the survival probability PnQ�t� and the inverse participa-
tion ratio �IPR� n,

PnQ�t� = ��n�e−iHt/��n��2 = �
�,�

pn�pn�e−i���t, �4�

n = lim
T→�

1

T
�

0

T

PnQ�t�dt = �
�

pn�
2 , �5�

with pn�= ��� �n��2 and ���= �E�−E�� /�. If n�1 then �n�
is extensively mixed.

Specifically, we investigate a set of zeroth-order states

around Ē
3542.5�E and P=8. This choice of Ē is moti-
vated by the existence of a number of near-degenerate states
and qualitatively similar behavior is seen at different values

of Ē as well. We select states that are not directly coupled by
the perturbations in Eq. �1� but nevertheless have IPR
smaller than 1. In Fig. 1 we show the survival probabilities
for four such zeroth-order states �a�= �0,11,1 ,4�, �b�

= �0,11,2 ,3�, �c�= �0,12,2 ,2�, and �d�= �0,13,1 ,2� with n
=0.97, 0.51, 0.40, and 0.74, respectively. The crucial obser-
vation is that �b�, �c�, and �d� mix amongst themselves even
though the corresponding classical dynamics �middle row in
Fig. 1� indicates long time trapping. Thus the observed
mixing is classically forbidden and corresponds to dynamical
tunneling. In Fig. 2 the variation of the energy levels with the
coupling parameter km1

is shown to indicate the lack of
avoided crossings between the states of interest. Figure 2
also shows the spectral intensities pn� and in every case
we see two clumps of lines—one at the origin and another

60�E away. A quantum explanation invokes the second
clump of states, the virtual or off-resonance states, which
provide a “vibrational superexchange” pathway for the
mixing �14�. The virtual states have n
1 and hence do not
mix significantly. It is particularly striking to note that nei-
ther pn� nor the energy level variations suggest any differ-
ences between the states, in contrast to the observations in
Fig. 1. We now show that a relatively simple explanation can
be given in terms of resonance-assisted tunneling on the en-
ergy shell.

In the resonance-assisted tunneling scenario the mixing
between, for example, �b� and �c� can be mediated by a 1:1
resonance involving modes j=2 and 4, i.e., a resonance vec-
tor mi3	�0,1 ,0 ,−1�. The Hamiltonian in Eq. �3� does not

FIG. 1. �Color online� Quantum survival probability PnQ of
�0,11,1 ,4�	�a� �black�, �0,11,2 ,3�	�b� �red�, �0,12,2 ,2�	�c�
�green�, and �0,13,1 ,2�	�d� �blue�. Time 
 is in units of the
Heisenberg time and 0.5Km1

=Km2
=Km3


0.2�E. �E
4.44 cm−1

for Eq. �1� with P=8. The cross probabilities ��n� �n�t���2 are also
shown. �middle row� The classical analog PnC of PnQ shows trap-
ping and is qualitatively different from PnQ. �bottom row� Quantum
PnQ� with the addition of weak counter-resonant terms �Eq. �7��. The
dynamical tunneling essentially shuts down, proving the importance
of the induced resonances.

FIG. 2. �Color online� Eigenvalues E	E� /�E versus varying
coupling strength km1

	Km1
/�E. Km2

=Km3

0.2�E. The circles

correspond to the eigenstates having the largest contribution from
the specific zeroth-order states �Fig. 1�. The dotted lines show a
similar calculation using Eq. �7� indicating no qualitative change in
the level motions. �bottom panel� Overlap intensities pn�= ��� �n��2

versus �	n	�En
0 −E�� /�E. Note the log-scale for the intensities

and the cluster of lines in all the plots around �	n=0, and 60.
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have mi3 explicitly but it can be induced by m1 and m3.
Similarly, mi1	�0,0 ,1 ,−1� and mi2	�0,1 ,−1 ,0� can be
induced by the resonances in Eq. �3�. The resonances can be

visualized by constructing the Arnol’d web �11� at E
 Ē and
fixed P, i.e., the intersection of the various resonance planes

mr ·�H0�I� /�I=0 with the energy shell H0�I�
 Ē. For near-
integrable systems the energy shell, resonance zones, and the
location of the zeroth-order states can be projected onto a
two-dimensional space of two independent frequency ratios.
The “static” Arnol’d web based on H0 highlights the various

possible resonances and their topology on H0�I�
 Ē. How-
ever, from the tunneling perspective it is crucial to determine

the dynamically relevant part of the static web at E
 Ē. This
“dynamical web” is determined via a wavelet based local
frequency analysis �15� of the Hamiltonian Eq. �3�. Briefly,

initial conditions �I ,�� satisfying H�I ,��
 Ē are generated
and the trajectories are followed in the frequency ratio space
��1 /�3 ,�1 /�4�. The frequencies �k�t� are computed along
the trajectory �I ,���t� by performing the wavelet transform
of zk�t�=�2Ik�t�exp�i�k�t��. The total number of visits in a
given region of the ratio space gives a density plot represent-
ing the web which highlights dynamically significant regions
at a given energy. The resulting dynamical web is shown in
Fig. 3 along with the location of the relevant zeroth-order
states. Apart from highlighting the primary resonances
m1 ,m3 the figure also indicates the existence of the induced
resonances mi1, mi2, and mi3 separating the states. The states
are located close to the junction formed by the three induced
resonances and far away from the primary resonances. Hence
Fig. 3 supports the notion that �b�, �c�, and �d� are mixed due
to dynamical tunneling mediated by the induced resonances.

In order to conclusively establish the role of the induced
resonances it is necessary to extract their strengths by pertur-
batively �4,5,8� removing the primary resonances in Eq. �3�
to O�	�. As a result we obtain the effective Hamiltonian con-
taining the induced resonances at O�	2� that are approxi-
mated by effective pendulums. For instance, one obtains the
effective pendulum Hamiltonian

Hef f
�24� =

�K24 − K24
r �2

2M24
+ 2V24 cos 2�24, �6�

appropriate for the induced resonance mi3 with K242I4 and
2�24��2−�4�. The resonance center is denoted by K24

r . The
coupling V24 can be expressed in terms of the conserved
quantities I3, Pc, and P24	 I2+ I4 and the resulting tunneling
time 
tun
�2��E /V24� agrees well with Fig. 1. Similarly
V23 and V34 associated with resonances mi2 and mi1, respec-
tively, can be extracted. Due to the simple classical-quantum
correspondence, V23, V24, and V34 can be translated back to
effective quantum strengths �m. Specifically, 2�mi1


V34

�0, 2�mi2

V23�0, and 2�mi3


V24�0. The perturbative
analysis yields �mi1

� ��mi2
�
��mi3

�
0.07Km2
. It is known

�5� that for significant mixing the states must lie symmetri-
cally with respect to the center of the mediating resonance
zone. Among the states considered, �b� and �c� satisfy the
criterion very well and hence enhanced mixing between
them is seen in Fig. 1. The state �a� is not symmetrically
located with respect to �b� and thus, combined with the very
small strength �mi1

, the induced resonance mi1 is ineffective.
Now consider modifying Eq. �1� according to

H� = H + ��mi2
��a2

†a3 + H.c.� + ��mi3
��a2

†a4 + H.c.� , �7�

where we have added terms to counter the induced reso-
nances. The reasoning is simple—if the induced resonances
are truly mediating the dynamical tunneling then adding the
counter resonances should suppress the tunneling. Moreover,

FIG. 3. �Color online� The Arnol’d web at E= Ē generated by
propagating 25000 classical trajectories for 

40. The primary
resonances, m1 �red�, m2 �black�, and m3 �magenta�, as predicted
by H0 are superimposed for comparison. The induced resonances
mi1= �0,0 ,1 ,−1�, mi2= �0,1 ,−1 ,0� and mi3= �0,1 ,0 ,−1� are indi-
cated by arrows. The nearly degenerate states �circles� are located
close to the induced resonances leading to state mixing �cf. Fig. 1�
via resonance-assisted tunneling. See text for details.

FIG. 4. IPR �Eq. �5�� of the near-degenerate states with respect
to H �circles�, H� with the correct sign �squares�, and H� with the
opposite sign �triangles�. ��mi2

�
��mi3
�
0.014�E in Eq. �7�. Note

the importance of the sign and the shutdown of tunneling for the
states of interest �filled symbols� with nearby states �open symbols�
being unaffected.
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since �mi2
,�mi3

�Km1,2,3
quantities like mean level spacing,

eigenvalue variations �cf. Fig. 2�, and spectral intensities
show little change as compared to the original system. De-
spite this, as shown in Fig. 1, bottom row, the survival prob-
abilities for �b�, �c�, and �d� indicate shutdown of dynamical
tunneling. Figure 4 provides further support in terms of the
IPR of the states; the addition of the weak counter terms,
with appropriate signs, affects only the states of interest
while other nearby states are unaffected. This establishes that
the induced resonances mi2 and mi3 are responsible for the
dynamical tunneling seen in Fig. 1.

In conclusion, this work shows that significant mixing
between near-degenerate states due to resonance-assisted
tunneling can be expected in very general situations. In ad-
dition, by suitable local modifications of the phase space,
complete control of the dynamical tunneling can be attained.

In this context the counter-resonances can be thought of as
weak control terms �16� and in nonautonomous systems this
suggests the possibility of control via additional weak driv-
ing fields with particular attention to the relative phases be-
tween them �17�. The system studied here is not in the deep
semiclassical limit, perhaps reason enough to argue against
competition from classical transport mechanisms, and yet the
importance of the nonlinear resonances is clear. Further work
in the deep semiclassical regime, more closely approaching
the molecular systems, is in progress.
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